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Abstract

Characterization of meningococci isolated from the pharynx is essential towards under-

standing the dynamics of meningococcal carriage and disease. Meningococcal isolates, col-

lected from adolescents resident in Salvador, Brazil during 2014, were characterized by

multilocus sequence typing, genotyping or whole-genome sequencing. Most were non-

groupable (61.0%), followed by genogroups B (11.9%) and Y (8.5%). We identified 34 differ-

ent sequence types (STs), eight were new STs, distributed among 14 clonal complexes

(cc), cc1136 represented 20.3% of the nongroupable isolates. The porA and fetA genotypes

included P1.18,25–37 (11.9%), P1.18–1,3 (10.2%); F5-5 (23.7%), F4-66 (16.9%) and F1-7

(13.6%). The porB class 3 protein and the fHbp subfamily A (variants 2 and 3) genotypes

were found in 93.0 and 71.0% of the isolates, respectively. NHBA was present in all isolates,

and while most lacked NadA (94.9%), we detected the hyperinvasive lineages B:P1.19,15:

F5-1:ST-639 (cc32); C:P1.22,14–6:F3-9:ST-3780 (cc103) and W:P1.5,2:F1-1:ST-11

(cc11). This is the first report on the genetic diversity and vaccine antigen prevalence

among N. meningitidis carriage isolates in the Northeast of Brazil. This study highlights the

need for ongoing characterization of meningococcal isolates following the introduction of

vaccines and for determining public health intervention strategies.

Introduction

Neisseria meningitidis is a human commensal bacterium that commonly colonizes the oropha-

ryngeal mucosa, occasionally causing life-threatening disease, such as meningitis or septicemia

[1] Meningococcal populations possess a diverse and dynamic structure [2,3]. However, most
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invasive meningococcal cases are caused by a limited number of clonal complexes (cc), known

as hyperinvasive lineages, which persistently exist over time despite high rates of recombina-

tion [3,4]. The population structure of meningococcal carriage strains is less well defined [5]

and some are associated with hypervirulent lineages [6]. Most carriage meningococci lack a

capsule and are thus nongroupable (NG). However, commensal strains may play an important

role as a reservoir of virulence genes, with implications for meningococcal diversity due to the

high frequency of recombination [3].

Multilocus sequence typing (MLST) is used for studying population biology and the evolu-

tion of microorganisms [4] and the PubMLST database allows the comparison of global

meningococcal strains [7]. While MLST has a low discriminatory power, this has been over-

come by characterizing the genes encoding several outer membrane proteins, including: por-

ins A (PorA) and B (PorB) and iron-regulated enterobactin (FetA) [8]. Typing of factor H-

binding protein (FHbp), Neisserial adhesion A (NadA) and Neisserial heparin binding antigen

(NHBA) can also improve meningococcal typing and provide information on strain coverage

conferred by the serogroup B meningococcal (MenB) vaccines [9]. These antigens were used

in the development of two MenB vaccines, the MenB-4C multi-component recombinant vac-

cine and the MenB-FHbp bivalent vaccine [9, 10].

In Brazil, meningococcal disease is endemic with an annual incidence of 1.5–2.0 cases per

100,000 inhabitants [11]. Serogroup C has been responsible for most cases and is historically

associated with ST-11 during the 1970s and ST-103 after 2000 [12]. However, there is only lim-

ited data describing meningococcal carriage in Brazil [13,14].

Characterization of meningococci isolated from the pharynx is essential towards under-

standing the dynamics of meningococcal carriage and disease and to determine the potential

impact of disease control programs, such as vaccination, on the transmission of meningococci.

In 2014, we conducted a cross-sectional study to assess the meningococcal carriage status of

11-19-year-old student’s resident in Salvador [15]. In the current work, the meningococcal car-

riage isolates were characterized by capsular group, ST, and the presence and sequence vari-

ability of the porA, porB, fetA, fHbp, nhba, and nadA genes.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee at the Gonçalo Moniz Institute, FIO-

CRUZ-BA (CAEE # 16099713.1.0000.0040). Written informed consent from all participants

(or guardians) in the study were obtained before sample and data collection.

Meningococcal isolates

Meningococcal isolates (n = 59) were recovered from oropharyngeal swabs collected from

1,200 students, aged 11–19 years old, attending 134 public schools in Salvador, Brazil, during

September-December 2014. Some 59 participants (4.9%) were found to be meningococcal car-

riers as described previously [15]. The swab was immediately plated onto a selective agar

medium (modified Thayer-Martin vancomycin, colistin, nystatin, and trimethoprim) and

introduced in plastic tubes containing 1 mL of skim milk-tryptone-glucose-glycerin (STGG)

transport medium[16]. Meningococcal identification was determined by Gram staining (BD

BBL, Sparks, MD), the oxidase reaction (BD BBL Dryslide, Cockeysville, MD), and carbohy-

drate utilization tests. Results were confirmed by API-NH1 strips (bioMérieux, Hazelwood,

MO). The isolates were stored at −80˚C in brain heart broth with 20% glycerol.
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Capsular typing

Capsular groups were characterized by real-time PCR (qPCR), the primers and probes for the

ctrA and sodC genes and for serogroups A, B, C, W, Y and X were used as described previously

[17,18],. The capsule null locus (cnl) was detected by PCR amplification and sequencing as

described previously [19].

Multilocus sequence typing (MLST)

MLST was performed according to the method described by Maiden et al. [4]. STs and cc were

assigned by searching the Neisseria PubMLST database (http://pubmlst.org/neisseria/).

Sequence data were assembled and alleles were determined using the Meningococcus Genome

Informatic Platform (MGIP, http://mgip.biology.gatech.edu) or SeqMan Pro, ver12.2 (DNAS-

TAR, Inc.).

Outer membrane protein typing

The amplification and sequencing of the porA, porB, fetA, fHbp, nhba and nadA genes were

performed as previously described [20–23]. Alleles and protein variants were assigned using

the Neisseria PubMLST database.

Whole-genome sequencing

The N. meningitidis isolates that were not fully characterized by molecular typing were ana-

lyzed by whole-genome sequencing. Genomic DNA was extracted [24] and sequenced using

MiSeq v2 chemistry (Illumina, San Diego, CA, USA). Genome assembly was carried out using

CLC Genomics Workbench, ver 9.0.0 (CLC bio, Aaarhus, Denmark) with read trimming and

mapping of reads back to contigs. The MLST alleles, STs and cc were identified by comparison

of the assembled genomes with PubMLST [7] alleles using a BLAST search (https://blast.ncbi.

nlm.nih.gov/Blast.cgi). Sequences of PorA, PorB, FetA, NadA, NHBA and FHbp were identi-

fied as described previously [24].

Phylogenetic analysis

Single nucleotide polymorphisms (SNPs) were identified using kSNP version 3 software [25]

with a kmer length of 25. A maximum likelihood phylogenetic tree was constructed from the

core SNPs and the Tamura-Nei model, using MEGA7 [26] and 500 bootstraps iterations.

Results

Capsular typing

Of the 59 N. meningitidis isolates analyzed, 61.0% (36/59) were NG, and 50.0% (18/36) lacked

capsular genes (capsule null). Most groupable isolates belonged to genogroup B (7/59; 11.9%),

followed by Y (5/59; 8.5%), E (4/59; 6.8%), Z (3/59; 5.1%), C (2/59; 3.4%) and W (2/59; 3.4%).

None of the study participants were colonized by either N. meningitidis genogroup A or gen-

ogroup X.

MLST profiles

Thirty-four different STs were identified, eight (23.5%) of which were described for the first

time in this study and were registered in the PubMLST database (Table 1). Overall, 83.1%

(49/59) of the isolates fell into 14 known cc. The most frequent were cc1136 (n = 12; 20.3%)

and cc198 (n = 11; 18.6%), in NG strains. Hyperinvasive lineage complexes were also detected
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Table 1. Genotypic characterization of the 59 N. meningitidis isolates.

Capsular Type ST Clonal Complex PorA PorB FetA FHbp† NHBA‡ NadA N˚ of Isolates

B 639 32 P1.19,15 3–1 F5-1 2.19 231 1.1 1

2120 41/44 P1.18–7,9 3–16 F1-5 2.19 2 No 1

11453 NA P.1.19,15–1 3–45 F1-7 2.24 21 No 1

3200 4821 P1.17–6,23–6 3–372 F3-36 2.16 669 No 1

3496 213 P1.22,14–26 3–14 F5-9 3.45 18 4/5 1

11577 41/44 P1.22,14–6 3–64 F1-199 2.19 291 No 1

5892 41/44 P1.7–2,13–1 3–66 F4-38 2.19 335 No 1

C 3771 35 P1.7–2,13–7 3–154 F1-7 2.24 21 No 1

3780 103 P1.22,14–6 2–23 F3-9 2.25 24 No 1

W 11 11 P1.5,2 2–3 F1-1 2.151 29 2/3 1

7097 11 P1.5,2 2–3 F1-1 2.151 29 2/3 1

Y 11545 NA P1.5–1,10–4 3–100 F1-7 2.21 9 No 1

23 23 P1.5–2,10–2 3–53 F1-3 2.104 8 No 1

11452 NA P1.18–1,3 2–194 F3-4 2.16 20 No 1

11461 23 P1.7–2,¶ 3–36 F1-5 2.21 145 No 1

5770 175 P1.5–1,10–3 3–100 F1-7 2.21 9 No 1

E 10220 254 P1.7–1,1 3–38 F3-67 1.13 9 No 2

10220 254 P1.7–1,1 3–38 F3-67 2.104 9 No 1

10224 254 P1.21,16 3–320 F3-9 1.13 9 No 1

Z 11458 NA P.19,15 3–1 F5-7 2.16 101 2/3.8 1

2123 NA P1.18–1,3 3–38 F5-7 2.25 101 No 1

5953 NA P1.18–1,30–2 3–63 F5-7 2.22 92 No 1

NG 823 198 P1.18,25–37 3–84 F5-5 1.4 10 No 3

6525 NA P1.5–11,10–13 3–100 F1-7 2.21 101 No 2

1136 1136 P1.18–1,3–4 3–84 F4-66 3.94 600 No 2

1136 1136 P1.18–1,3 3–84 F4-66 3.94 600 No 1

4210 178 P1.19–5,15–23 3–38 F1-7 1.12 6 No 1

823 198 P1.18,25–37 3–84 F5-5 1.1 10 No 1

823 198 P1.18,25–44 3–84 F5-5 1.4 10 No 1

823 198 P1.18–1,30–4 3–381 F5-5 1.4 10 No 1

1136 1136 P1.18–1,3–8 3–84 F4-66 3.31 600 No 1

6519 23 P1.18–1,30–2 3–36 F5-5 2.21 145 No 1

6519 23 P1.18–1,30 3–36 F5-5 2.21 145 No 1

6525 NA P1.5–11,10–13 3–100 F1-7 2.21 9 No 1

11451 198 P1.18,25–37 3–84 F5-5 1.4 10 No 1

639 32 P1.19,15 3–1 F5-1 2.19 145 1.1 1

cnl§ 1136 1136 P1.18–1,3 3–84 F4-66 3.94 600 No 3

823 198 P1.18,25–37 3–84 F5-5 1.4 10 No 2

53 53 P1.7,30–3 3–64 F1-2 2.102 58 No 2

53 53 P1.7–2,30–3 3–64 F1-5 2.102 58 No 1

53 53 P1.7,30–2 3–64 F1-5 2.102 65 No 1

53 53 P1.7,30–45 3–64 F1-2 2.102 58 No 1

823 198 P1.18,25–32 3–37 F5-5 1.4 10 No 1

1136 1136 P1.18–1,3–7 3–84 F4-66 3.94 600 No 1

7129 NA P1.12–6,13–39 3–122 F5-5 3.627 308 No 1

7450 1136 P1.18,25 3–37 F2-7 3.94 145 No 1

(Continued )
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and included: cc23 (n = 4; 6.8%); cc41/44 (n = 3; 5.1%); cc32 (n = 2; 3.4%), cc11 (n = 2; 3.4%),

cc35 (n = 1; 1.7%), cc103 (n = 1; 1.7%) and cc175 (n = 1; 1.7%) (Table 1).

An association between the capsular groups and cc was observed: cc1136, cc198 and cc53

were associated with NG strains; cc32 and cc41/44 were found among serogroup B isolates;

cc103 was related to serogroup C strains, and cc11 was found among serogroup W isolates

(Fig 1). Furthermore, three NG strains were associated with the hypervirulent cc23 (n = 2) and

cc32 (n = 1).

Using the European Meningococcal Disease Society (EMGM) recommended strain des-

ignation for meningococci [8], we identified 44 finetypes including: NG:P1.18,25–37:F5-5:

ST-823 (cc198) (n = 7; 11.9%) and NG:P1.7–1,1:F4-66:ST-1136 (cc1136) (n = 4; 6.8%). We

also found isolates belonging to the hyperinvasive lineages W:P1.5,2:F1-1:ST-11 (cc11)

(n = 1), B:P1.19,15:F5-1:ST-639 (cc32) (n = 1), C:P1.22,14–6:F3-9:ST-3780 (cc103) (n = 1)

(Table 1).

Outer membrane protein typing

The porA, porB, fetA, fHbp, nhba, and nadA genes were characterized in all 59 isolates

(Table 1). A total of 36 different PorA types (P1.VR1,VR2) were identified, including 18 VR1

variants and 34 VR2 variants. The most common PorA was P1.18,25–37 (n = 7, 11.9%), fol-

lowed by P1.18–1,3 (n = 6, 10.2%). None of the isolates contained the VR2 variant 4 present in

the MenB-4C vaccine and only one serogroup Y (cc23) isolate contained the VR2 variant 4

(Table 1). We found a predominance of PorB class 3 proteins (n = 55, 93.2%), and PorB 3–84

(n = 20, 33.9%) was the most prevalent. We also identified five novel PorB genotypes: 2–194,

3–36, 3–122, 3–320, and 3–381 (Table 1).

Among the 17 FetA variants identified, the most frequent was F5-5 (n = 14, 23.7%), fol-

lowed by F4-66 (n = 10, 16.9%) and F1-7 (n = 8, 13.6%). The fetA gene was deleted in only one

NG isolate belonging to cc1136; five isolates belonging to different cc included FetA variants

that are associated with hypervirulent lineages, including F5-1 (n = 2), F3-9 (n = 2), and F2-7

(n = 1) [27].

All three variants (two subfamilies) of the vaccine antigen FHbp were identified, the v2 vari-

ant was the most prevalent (n = 30; 50.8%), followed by v1 (n = 15; 25.4%) and v3 (n = 14;

23.7%). Overall, the most prevalent FHbp subvariants were: FHbp-3.94 (n = 10; 16.9%) and

Table 1. (Continued)

Capsular Type ST Clonal Complex PorA PorB FetA FHbp† NHBA‡ NadA N˚ of Isolates

11459 1136 P1.18–4,25–60 3–84 −¶¶ 3.31 262 No 1

11462 198 P1.22–1,14–23 3–84 F5-5 1.4 10 No 1

10238 1136 P1.18–4,25–50 3–84 F4-66 3.94 600 No 1

11552 1136 P.18-1,3–8 3–84 F4-66 3.94 600 No 1

* ST, sequence type; PorA, porin A; PorB, porin B; FetA, iron-regulated enterobactin; FHbp, factor H binding protein; NHBA, neisserial heparin binding

antigen; NadA, Neisseria adhesion A; NA, clonal complex not assigned; NG, non genogroupable. The new STs that were described for the first time in this

study are indicated in bold.
†Nomenclature using variant peptide subvariant.
‡Novartis nomenclature.
¶PorA VR2 variant was not found.
§cnl, Capsule null locus.
¶¶fetA gene deleted.

https://doi.org/10.1371/journal.pone.0185038.t001
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Fig 1. Phylogenetic tree of the N. meningitidis isolates based on the whole-genome sequence data.

The N. meningitidis isolates are labelled with their sample ID, serogroup (SG), sequence type (ST) and clonal

complex (cc). An N. lactamica isolate was used as the outgroup. Internal nodes are labeled with bootstrap

values. The scale bar is based on the 7131 positions in the core SNP matrix and indicated nucleotide

substitutions per site.

https://doi.org/10.1371/journal.pone.0185038.g001
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FHbp-1.4 (n = 10; 16.9%), associated with cc1136 and cc198, respectively; FHbp-2.21 (n = 8;

13.6%), associated with cc23 (3 isolates), cc175 (1 isolate), or were not assigned to any cc (4 iso-

lates). FHbp-1.1, present in the MenB-4C vaccine [28], was found in only one isolate associ-

ated with cc198 (Table 1).

We identified 20 unique NHBA subvariants: NHBA-10 was the most frequent (n = 11,

18.6%), associated with cc198, followed by NHBA-600 (n = 10, 16.9%), associated with cc1136

(Table 1). Only one isolate (genogroup B; cc41/44) contained the NHBA-2 variant that is

included in the MenB-4C vaccine. Most of the isolates lacked nadA (n = 56, 94.9%), and none

of the isolates included the NadA-3 variant present in the MenB-4C vaccine [28].

Genomic diversity of the N. meningitidis isolates

The genetic relatedness of the 45 N. meningitidis isolates that could not be fully characterized

by molecular typing was assessed using whole-genome sequencing. The phylogenetic analysis

revealed that isolates from the same cc clustered together (Fig 1). A total of 7131 core SNPs

were identified with a difference of 0–3847 between all isolates analyzed.

Discussion

In the present study, we evaluated the molecular characteristics of meningococcal carriage iso-

lates recovered from 11-19-year-old students, resident in Salvador, Brazil. Most of the N.

meningitidis isolates were NG, which is consistent with other carriage studies [19,28,29].

Although the capsule is not required for person-to-person transmission [19] there is evidence

that loss of the capsule enhances the capacity of meningococci to colonize the human naso-

pharynx and to avoid human defense systems [30]. Furthermore, in some instances, capsule-

deficient strains have caused invasive disease [31].

Among the groupable carriage isolates, the most common included genogroups MenB and

MenY, in agreement with previous reports [28,32,33]. In addition, we found a low prevalence

of MenC carriage among the students, which may be related to the mass vaccination campaign

with a MenC conjugate vaccine that was conducted in Salvador in 2010 [34]. Although the vac-

cination status of the participants was not available, the MenC vaccination campaign for 10-

24-year-olds may have had some effect on the low MenC colonization rates seen in this study.

As seen in studies from the United Kingdom, the introduction of a MenC conjugate vaccine to

the adolescent and young adult population was responsible for a 67% reduction in MenC colo-

nization rates compared to non-vaccinated individuals [35]. However, we were unable to eval-

uate the impact of MenC conjugate vaccine on meningococcal carriage due to the lack of

baseline carriage data prior to the vaccination campaign.

Molecular typing revealed that the N. meningitidis isolates were highly diverse, as expected

for a carrier population [2]. We characterized 34 STs belonging to 14 cc and found an associa-

tion with some of the capsular groups, as previously reported [29,36]. The cc1136 and cc198

were most common and, as observed in our study, these cc can be found among carriage and

cnl-positive isolates [36]. Indeed, the genetic relatedness of the 45 isolates analyzed by whole-

genome sequencing found that isolates belonging to the same cc were more closely related and

formed distinct phylogenetic clusters (Fig 1).

In agreement with previous reports of carriage and invasive isolates, we found an associa-

tion between genogroup B and cc41/44, cc32 and cc4821 [6,28,33]. Interestingly, one of the

NG cc32 isolates clustered with a genogroup B cc32 isolate and had the same genotype profile

except for the NHBA protein variant (Table 1). This NG cc32 isolate lacked the csb gene,

which is required for capsule synthesis.
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Genogroup Y was associated with cc23 and cc175 and isolates belonging to cc23 have been

reported to be involved with invasive disease in the USA, South America, Europe and South

Africa [37]. Furthermore, cc175 was responsible for over 17% of MenY invasive cases in Brazil,

during 2007–2011 [38]. These results demonstrate the continuing circulation of pathogenic

isolates among carriers.

Previous studies found that a small proportion of carriage isolates belonged to hyperinva-

sive lineages [6,29]. Furthermore, it is known that these lineages can persist over many decades

and spread around the world, despite high rates of recombination [3]. In this study, we identi-

fied three hyperinvasive isolates associated with meningococcal disease cases in Brazil. Of

note, the strain C:P1.22,14–6:F3-9:ST-3780 (cc103), differing only in the PorA VR1 subtype, is

responsible for most meningococcal disease cases in Brazil. It was also identified as the causa-

tive agent of the last outbreak that occurred in Bahia State, Brazil, in 2010 [34,39]. The MenB

hyperinvasive isolate B: P1.19,15: F5-1: ST-639 (cc32) has been found in almost all Brazilian

states, with the highest prevalence in the Northeast region [40]. Similarly, the genogroup W

isolate, with the profile W: P1.5,2: F1-1: ST-11 (cc11), has been linked to an increase in

endemic meningococcal disease in many regions, including England, South Africa and South

America countries, including Brazil, where case fatality rates reached 28% [41–43]. There has

been an increase in the number of meningococcal disease cases associated with MenW in

South America, including Brazil, where this is now the third most prevalent serogroup [41,44].

Such findings show the need for continuous surveillance, not only phenotypically but includ-

ing the molecular characterization of the strains, due to the high transmissibility and virulence

of the circulating genotype.

There are few reports describing the distribution of the vaccine antigen alleles among

N. meningitidis carriage isolates [28,45]. Overall, the PorA, PorB and FetA variants identified

in this study were highly variable within the same genogroup and cc, as well as the presence of

the same antigenic allele in different cc.

This study showed that almost 95% of the isolates lacked NadA, which confirmed the obser-

vation that only approximately 5% of the carrier population harbor strains with this protein

[46]. In addition, we found an association between NadA and some of the hypervirulent cc

including: NadA-1 (cc32); NadA-4 (cc2132) and NadA-2 (cc11) [45,46]. Furthermore, we

observed associations such as FHbp 2.102, NHBA 58 and PorB 3–64 variants among cnl (cc53)

strains; FHbp 1.4, NHBA 10 and PorB 3–84 among cnl (cc198) strains; FHbp 3.94, NHBA 600

and PorB 3–84 among cnl (cc1136) strains; and NHBA 21 and NHBA 24 associated with

MenC cc35 and cc103, respectively, as previously reported [28,45,47].

Considering the MenB-4C vaccine components globally, the NHBA-2 and FHbp 1.1 vari-

ants were found in carriage isolates B: P1.18–7.9: F1-5: ST-2120 (cc41/44) and NG: P1.18.25–

37: F5-5: ST-823 (cc198), respectively. Some studies reported high cross-reactivity among

homologous FHbp-1 subvariants, heterologous NHBA subvariants, and among NadA-1,

NadA-2 and NadA-3 variants [48,49]. Moreover, studies on the effectiveness of the MenB-4C

vaccine have shown that the presence of at least one of the components may be able to induce

protection against both genogroup B and non-genogroup B isolates [50].

In conclusion, this study presents an overview of the molecular diversity and vaccine anti-

gen content of N. meningitidis carriage isolates in Salvador, Brazil. Continuous monitoring of

antigen variability, including carriage isolates from other age groups, as well as isolates from

meningococcal cases, will be needed to monitor the impact of the anti-meningococcal vaccina-

tion strategies on the carriage population, as well as to contribute to future public health deci-

sions on vaccine usage.
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Data curation: Cécilia Batmalle Kretz.

Formal analysis: Ana Rafaela Silva Simões Moura, Cécilia Batmalle Kretz, Xin Wang, Leila
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